3.8.55 \(\int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [755]

3.8.55.1 Optimal result
3.8.55.2 Mathematica [B] (warning: unable to verify)
3.8.55.3 Rubi [A] (verified)
3.8.55.4 Maple [B] (verified)
3.8.55.5 Fricas [F]
3.8.55.6 Sympy [F]
3.8.55.7 Maxima [F]
3.8.55.8 Giac [F]
3.8.55.9 Mupad [F(-1)]

3.8.55.1 Optimal result

Integrand size = 32, antiderivative size = 303 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d} \]

output
2*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a- 
b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/( 
a-b))^(1/2)/d+2*b*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2), 
((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec 
(d*x+c))/(a-b))^(1/2)/d-2*a*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/( 
a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b 
))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d
 
3.8.55.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(749\) vs. \(2(303)=606\).

Time = 21.02 (sec) , antiderivative size = 749, normalized size of antiderivative = 2.47 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {4 b \cos (c+d x) (b+a \cos (c+d x)) \left (a^2-b^2 \sec ^2(c+d x)\right ) \sin (c+d x)}{d \left (a^2-2 b^2+a^2 \cos (2 c+2 d x)\right ) \sqrt {a+b \sec (c+d x)}}-\frac {4 \sqrt {b+a \cos (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (-a b \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}-b^2 \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}+a b \tan ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}-b^2 \tan ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}-2 a^2 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 a^2 \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-b (a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+\left (a^2+b^2\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{d \left (a^2-2 b^2+a^2 \cos (2 c+2 d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}} \]

input
Integrate[(a^2 - b^2*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]
 
output
(-4*b*Cos[c + d*x]*(b + a*Cos[c + d*x])*(a^2 - b^2*Sec[c + d*x]^2)*Sin[c + 
 d*x])/(d*(a^2 - 2*b^2 + a^2*Cos[2*c + 2*d*x])*Sqrt[a + b*Sec[c + d*x]]) - 
 (4*Sqrt[b + a*Cos[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2)*Sqrt[(1 - Tan[(c + 
 d*x)/2]^2)^(-1)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(-(a*b*Tan[(c + d*x)/2]*Sqr 
t[1 - Tan[(c + d*x)/2]^2]) - b^2*Tan[(c + d*x)/2]*Sqrt[1 - Tan[(c + d*x)/2 
]^2] + a*b*Tan[(c + d*x)/2]^3*Sqrt[1 - Tan[(c + d*x)/2]^2] - b^2*Tan[(c + 
d*x)/2]^3*Sqrt[1 - Tan[(c + d*x)/2]^2] - 2*a^2*EllipticPi[-1, ArcSin[Tan[( 
c + d*x)/2]], (a - b)/(a + b)]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[ 
(c + d*x)/2]^2)/(a + b)] - 2*a^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], 
(a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b 
*Tan[(c + d*x)/2]^2)/(a + b)] - b*(a + b)*EllipticE[ArcSin[Tan[(c + d*x)/2 
]], (a - b)/(a + b)]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x 
)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (a^2 + b^2)*EllipticF[ArcSin[Tan 
[(c + d*x)/2]], (a - b)/(a + b)]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a* 
Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(d*(a^2 - 2*b^2 + a^ 
2*Cos[2*c + 2*d*x])*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*(1 + Tan[( 
c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/ 
2]^2)/(1 + Tan[(c + d*x)/2]^2)])
 
3.8.55.3 Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 314, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.406, Rules used = {3042, 4530, 25, 3042, 4404, 25, 27, 3042, 4271, 4324, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2-b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4530

\(\displaystyle -\int -\left ((a-b \sec (c+d x)) \sqrt {a+b \sec (c+d x)}\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int (a-b \sec (c+d x)) \sqrt {a+b \sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a-b \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4404

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx+\int -\frac {b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-\int \frac {b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-b^2 \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4271

\(\displaystyle b^2 \left (-\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 4324

\(\displaystyle -\left (b^2 \left (\int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-\int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\left (b^2 \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 4319

\(\displaystyle -\left (b^2 \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 4492

\(\displaystyle -\left (b^2 \left (-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

input
Int[(a^2 - b^2*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]
 
output
(-2*a*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec 
[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + 
 b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - b^2*((-2*(a - b)*Sqrt[a 
+ b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], 
(a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c 
 + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSi 
n[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec 
[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))
 

3.8.55.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4324
Int[csc[(e_.) + (f_.)*(x_)]^2/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x 
_Symbol] :> -Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] + Int[Csc[e + f* 
x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, 
 x] && NeQ[a^2 - b^2, 0]
 

rule 4404
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[a*c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] 
+ Int[Csc[e + f*x]*((b*c + a*d + b*d*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]] 
), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4530
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_.), x_Symbol] :> Simp[C/b^2   Int[(a + b*Csc[e + f*x])^(m + 1) 
*Simp[-a + b*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && 
 EqQ[A*b^2 + a^2*C, 0]
 
3.8.55.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(962\) vs. \(2(276)=552\).

Time = 8.30 (sec) , antiderivative size = 963, normalized size of antiderivative = 3.18

method result size
parts \(\text {Expression too large to display}\) \(963\)
default \(\text {Expression too large to display}\) \(1347\)

input
int((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
2*a^2/d*(cos(d*x+c)+1)*(EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2 
))-2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,((a-b)/(a+b))^(1/2)))*(1/(a+b)*(b 
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(a+ 
b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))-2*b/d*((cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-c 
sc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)^2+(cos(d*x+c)/(cos(d*x+c)+1))^ 
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c) 
-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d 
*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a 
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)^2+2*(cos(d*x+c)/(cos(d*x+c 
)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot( 
d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)+2*(cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(co 
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)-2*EllipticF(cot(d*x+ 
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a 
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)+(cos(d*x+c)/(cos(d 
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE( 
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a+(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)- 
csc(d*x+c),((a-b)/(a+b))^(1/2))*b-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/...
 
3.8.55.5 Fricas [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { -\frac {b^{2} \sec \left (d x + c\right )^{2} - a^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fric 
as")
 
output
integral(-sqrt(b*sec(d*x + c) + a)*(b*sec(d*x + c) - a), x)
 
3.8.55.6 Sympy [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \left (a - b \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}}\, dx \]

input
integrate((a**2-b**2*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral((a - b*sec(c + d*x))*sqrt(a + b*sec(c + d*x)), x)
 
3.8.55.7 Maxima [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { -\frac {b^{2} \sec \left (d x + c\right )^{2} - a^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxi 
ma")
 
output
-integrate((b^2*sec(d*x + c)^2 - a^2)/sqrt(b*sec(d*x + c) + a), x)
 
3.8.55.8 Giac [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { -\frac {b^{2} \sec \left (d x + c\right )^{2} - a^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac 
")
 
output
integrate(-(b^2*sec(d*x + c)^2 - a^2)/sqrt(b*sec(d*x + c) + a), x)
 
3.8.55.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\int -\frac {a^2-\frac {b^2}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((a^2 - b^2/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2),x)
 
output
-int(-(a^2 - b^2/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2), x)